Short Communication

Bis(1-methylbenzotriazole)dinitratocobalt(II): A Pseudo-Octahedral Complex with Pseudo-Tetrahedral Magnetochemical and Ligand Field Characteristics

Theodoros F. Zafiropoulos^{1, *}, Spyros P. Perlepes^{2, *}, and John Plakatouras²

¹ Laboratory of Inorganic Chemistry, Chemistry Department, University of Patras, Patras, Greece

² Laboratory of Inorganic Chemistry, Chemistry Department, University of Ioannina, Ioannina, Greece

Summary. The reaction between cobalt(II) nitrate and 1-methylbenzotriazole (*MeBTA*) leads to a complex with unusual magnetochemical and ligand field characteristics. The synthesis and the physical and spectroscopic properties of the pseudo-octahedral complex $[Co(MeBTA)_2(NO_3)_2]$ are described.

Keywords. 1-Methylbenzotriazole; Complexes of corrosion inhibitors; Ligand field spectra; Magnetic moments; Pseudo-octahedral cobalt(II) complexes.

Bis(1-methylbenzotriazol)dinitratocobalt(II): Ein pseudo-octaedrischer Komplex mit pseudotetraedrischen magnetochemischen und Ligandenfeld-Charakteristika (Kurze Mitt.)

Zusammenfassung. Die Reaktion zwischen Kobalt(II)nitrat und 1-Methylbenzotriazol (MeBTA) führt zu einem Komplex mit ungewöhnlichen magnetochemischen und Ligandenfeld-Eigenschaften. Die Synthese und die spektroskopischen Eigenschaften des pseudo-octaedrischen Komplexes [$Co(MeBTA)_2(NO_3)_2$] werden beschrieben.

Introduction

We have initiated a systematic study of the coordination chemistry of benzotriazoles, because of the remarkable efficiency of this class of ligands as corrosion inhibitors for copper, copper alloys and a few other metals [1–6]. The reaction between $Co(NO_3)_2 \cdot 6 H_2O$ and 1-methylbenzotriazole (*MeBTA*, I) led to a product with unusual magnetochemical and ligand field characteristics, which are described in the present communication.

Experimental

Analyses, physicochemical measurements and spectroscopic techniques were carried out by published methods [7, 8]. The complex was prepared by adding a warm solution of $Co(NO_3)_2 \cdot 6 H_2O$ (3.0 mmol) in absolute ethanol (10 ml) to a, vigorously stirred, hot solution of *MeBTA* (6.1 mmol) in 15 ml of absolute ethanol. To the reaction mixture, 3.5 ml of triethylorthoformate were added for dehydration purposes. The resulting solution was heated gently for 1 h. The complex crystallized by the addition of ca. 20 ml of *n*-hexane to the cooled solution. The precipitate was collected by filtration, washed with ether and dried *in vacuo* over silica gel. Yield: 65%. Anal. calc. for $CoC_{14}H_{14}N_8O_6$: Co 13.12, C 37.43, H 3.15, N 24.95%. Anal. found: Co 13.31, C 37.16, H 3.21, N 25.19%.

Results and Discussion

Physical and spectral data are presented in Table 1. We could not obtain samples for single-crystal X-ray structural analysis. The complex is microcrystalline and stable in atmospheric conditions. The X-ray powder diffraction pattern indicates that $Co(MeBTA)_2(NO_3)_2$ is not contaminated with starting materials. Molecular weight measurements in acetone indicate that the complex is monomeric in solution. It is a non-electrolyte in this solvent and also in nitromethane [9]. The TG/DTG/DTA curves show that the complex violently at ca. 260°C.

The slight shift of v(N=N) and v(N-N) to higher wavenumber in the IR spectrum of $Co(MeBTA)_2(NO_3)_2$, compared with the frequencies of these modes in the spectrum of *MeBTA*, seems to indicate that a monodentate n_1 coordination, possibly via N³, occurs in the present complex. It is known from X-ray crystal structures of complexes containing neutral *BTAH* ligands [1, 3, 10] (*BTAH* = benzotriazole), that this ligand prefers to coordinate exclusively in a monodentate fashion via N³; this type of coordination leads to a slight decrease of the N¹--N² distance, but does not influence the N²--N³ distance, as compared with the corresponding bond lengths in the free *BTAH* molecule [11]. The vibrational fundamentals of the nitrato groups are strongly indicative for the presence of chelated bidentate nitrates [12].

While the magnetic moment of $Co(MeBTA)_2(NO_3)_2$ at room temperature is in the region expected for pseudo-tetrahedral complexes [13], the d-d electronic spectrum of this complex in the solid state (Fig. 1) and in solution differs from spectra of typical pseudo-tetrahedral Co(II) complexes [12–14]. The band at ca. 19 000 cm⁻¹, although similar in general contour to the v_3 visible band of other tetrahedral Co(II) complexes, is at a higher energy than would have been expected [14]. Moreover, the molar extinction coefficient of the visible band in solution is clearly higher than the values expected for pseudo-octahedral stereochemistry but appreciably lower than those found for pseudo-tetrahedral Co(II) complexes [13, 14]. Also the near-IR spectrum consists of two d-d bands instead of one expected for high-spin pseudo-octahedral $3d^7$ systems [14]. The number and the frequencies of the d-d bands in the spectrum of $Co(MeBTA)_2(NO_3)_2$ let us rule out five-coordinate stereochemistries [14].

The above peculiar magnetic and spectral behaviour has been found in a very limited number of some other Co(II) complexes of the type $CoL_2(NO_3)_2$ (L = a phosphine or arsine oxide [15], a hindered monodentate aromatic amine [16] and 1-methyl-3,4-diphenylpyrazole [17]). This behaviour has been explained [15] by

Bis(1-methylbenzotriazole)dinitratocobalt(II)

Color	deep red	magnetochemical data	
$\Lambda_M(\mathrm{Scm^2mol^{-1}})^a$	•	$\mu_{eff}(BM)^{f}$	4.58
in nitromethane	6	θ(K) ^g	- 3.0
in acetone	8	ligand field $(10^3 \mathrm{cm}^{-1})$	
Molecular weight ^b	456 (449)	diffuse reflectance	
$IR (cm^{-1})$		${}^{4}T_{1g} \rightarrow {}^{4}T_{1g}(P)$	20.62 sh, 18.69
Ligand bands ^c		${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}$	8.73, 8.10
v(N=N)	1 219 s	calc. ${}^{4}T_{1g} \rightarrow {}^{4}A_{2g}$	17.93
v(N-N)	1 136 m	other bands	15.27 sh
Nitrate bands ^{d, e}		$10 Dq (cm^{-1})$	9 495
$v_1(\mathbf{A}_1)$	1 429 s	$B(cm^{-1})$	760
$v_4(B_2) + [(C-N)]$	1 277 sb	β	0.78
$v_2(A_1)$	1017 m	solution (nitromethane) ^h	
$v_6(\mathbf{B}_1)$	810 m	${}^{4}T_{1g} \rightarrow {}^{4}T_{1g}(P)$	18.97 (295)
$\nu_5(\mathbf{B}_2)$	697 w	${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}$	8.82 (47), 7.99 (39)
$v(Co-ONO_2)$	300 m, 274 s	$10 \mathrm{Dq} (\mathrm{cm}^{-1})$	9 565
		$B(cm^{-1})$	784
		β	0.81

Table 1. Physical properties, diagnostic IR bands and magnetochemical and ligand field spectral data of $Co(MeBTA)_2(NO_3)_2$

^a Values of molar conductivity for a $10^{-3} M$ solution at 25° C

^b Ebullioscopically in acetone; the required value for the monomer is in parentheses

^c The IR spectrum of *MeBTA* (not included in the table) exhibits v(N=N) at 1 196 s and v(N-N) at 1 108 m cm⁻¹

^d The $v_3(A_1)$ mode of the bidentate $C_{2\nu}$ nitrato groups was not assigned because the region at ca. 750 cm⁻¹ is obscured by strong *MeBTA* bands

^c The IR spectra of this complex in nujol or hexachlorobutadiene and of its blue powdered KBr pellet differ; the spectrum obtained in KBr is indicative of the presence of ionic D_{3h} nitrates (this is confirmed by the appearance of a new strong band at 1.385 cm^{-1})

^f Measured at room temperature

^h Values of molar extinction coefficient ε in $1 \text{ cm}^{-1} \text{ mol}^{-1}$ are in parentheses

postulating that the six-coordinate complex can be regarded as having a rather distorted quasi-tetrahedral structure with bonds directed toward the centres of the bidentate nitrato groups instead of toward the oxygen atoms. The crystal structure of the trimethylphosphine oxide complex has been determined [18]. It has a distorted *cis* octahedral $[Co((CH_3)_3PO)_2(NO_3)_2]$ structure, with the nitrate groups chelating, but little distorted from their inherent D_{3h} symmetry; the molecule has no crystallographic symmetry elements, and the only approximate symmetry element is a quasi-twofold axis.

However, the assumption of a quasi-tetrahedral coordination is perhaps unnecessary [16]. These molecules have a distorted six-coordinate structure of C_2 symmetry. The degeneracy of the ground state of the Co(II) ion is lifted (${}^{4}T_{1g}(O_h) \rightarrow {}^{4}A$, 2 ${}^{4}B$ in C₂). The new orbital singlet ground state gives rise to a magnetic moment much closer to the spin-only value than that observed in a octahedral complex and

^g The value of Weiss constant was determined from the plot of the reciprocal molar susceptibility corrected for diamagnetism, *vs.* temperature (85–295 K)

Fig. 1. The electronic diffuse reflectance spectrum of $Co(MeBTA)_2(NO_3)_2$

explains the fact that the magnetic moment of $Co(MeBTA)_2(NO_3)_2$ is practically temperature independent (very small ϑ value). It should be noted that the method of distinguishing octahedral from tetrahedral complexes by magnetic measurements [13] is really only a way of distinguishing an orbital triplet ground state from an orbital singlet ground state. The experimental magnetochemical data for $Co(MeBTA)_2(NO_3)_2$ imply that the complex has an orbital singlet ground state rather than being necessarily tetrahedral. The absence of a center of symmetry could produce a fairly high intensity d-d spectrum since both p and d orbitals span common representations in C₂; this was observed in the present complex. The splitting of the near-IR d-d band in high-spin octahedral Co(II) systems can be regarded as a criterion for distorted *cis* structures.

References

- [1] Hursthouse M. B., Short R. L., Robinson S. D. (1986) Polyhedron 5: 1573
- [2] Spek A. L., Siedle A. R., Reedijk J. (1985) Inorg. Chim. Acta 100: L15 (and literature cited therein)
- [3] Søtofte I., Nielsen K. (1984) Acta Chem. Scand. A38: 257 (and literature cited therein)
- [4] Himes V. L., Mighell A. D., Siedle A. R. (1981) J. Amer. Chem. Soc. 103: 211
- [5] Reedijk J., Roelofsen G., Siedle A. R., Spek A. L. (1979) Inorg. Chem. 18: 1947
- [6] Brown L. D., Ibers J. A., Siedle A. R. (1978) Inorg. Chem. 17: 3026
- [7] Hondrellis V., Perlepes S. P., Kabanos T. A., Tsangaris J. M. (1988) Synth. React. Inorg. Met.-Org. Chem. 18: 83
- [8] Galinos A. G., Perlepes S. P., Kouinis J. K. (1980) Monatsh. Chem. 111: 829
- [9] Geary W. J. (1971) Coord. Chem. Rev. 7: 81
- [10] Søtofte I., Nielsen K. (1981) Acta Chem. Scand. A35: 733, 739
- [11] Escande A. E., Galigne J. L., Lapasset J. (1974) Acta Crystallogr. B30: 1490
- [12] Kabanos T., Perlepes S. P., Hondrellis V., Tsangaris J. M. (1986) Monatsh. Chem. 117: 955

Bis(1-methylbenzotriazole)dinitratocobalt(II)

- [13] Cotton F. A., Wilkinson G. (1988) Advanced Inorganic Chemistry, 5th edn. Wiley, New York, pp. 729–732
- [14] Lever A. B. P. (1984) Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam, pp. 480– 505
- [15] Cotton F. A., Goodgame D. M. L., Soderberg R. H. (1963) Inorg. Chem. 2: 1162
- [16] Lever A. B. P. (1965) Inorg. Chem. 4: 1042
- [17] Perlepes S. P., Nicholls D., Harrison M. R. (1985) Inorg. Chim. Acta 102: 61
- [18] Cotton F. A., Soderberg R. H. (1963) J. Amer. Chem. Soc. 85: 2042

Received December 1, 1988. Accepted December 15, 1988